
BFS, DFS, Floyd Warshall

Breath First Search

BFS is a graph traversing algorithm that uses queue data structure.

Steps for traversing :

1. Start with a root node
2. Mark the node as visited
3. Insert the root node in the queue
4. Dequeue the front node from the queue and enqueue the adjacent nodes of the front node

Repeat enquing and dequing the nodes from the queue and make them visited. Each node is visited just
once. So the visitited array is needed.

 .

Depth First Search

DFS is a graph traversing algorithm that uses stack data structure.

Rules for traversing :

● Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.
● Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the

vertices from the stack, which do not have adjacent vertices.)
● Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

As C does not have any unvisited adjacent node so we keep popping the stack until we find a node that
has an unvisited adjacent node. In this case, there's none and we keep popping until the stack is empty.

Floyd Warshall

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of vertices in a weighted
graph. This algorithm works for both the directed and undirected weighted graphs. But, it does not work for the
graphs with negative cycles (where the sum of the edges in a cycle is negative).

Create a matrix A1 of dimension n*n where n is the number of vertices. The row and the column are
indexed as i and j respectively. i and j are the vertices of the graph. Each cell A[i][j] is filled with the
distance from the ith vertex to the jth vertex. If there is no path from ith vertex to jth vertex, the cell is left
as infinity.

matrix A1 is derived from matrix A0. The elements in the first column and the first row are left as they are. The
remaining cells are filled in the following way. Let k be the intermediate vertex in the shortest path from source
to destination. In this step, k is the first vertex. A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k]
+ A[k][j]). That is, if the direct distance from the source to the destination is greater than the path through the
vertex k, then the cell is filled with A[i][k] + A[k][j]. In this step, k is vertex 1. We calculate the distance from
source vertex to destination vertex through this vertex k. For example: For A1[2, 4], the direct distance from
vertex 2 to 4 is 4 and the sum of the distance from vertex 2 to 4 through vertex (ie. from vertex 2 to 1 and from
vertex 1 to 4) is 7. Since 4 < 7, A0[2, 4] is filled with 4.

Calculate the distance from the source vertex to destination vertex through this vertex k

Similarly, A2 is created using A3. The elements in the second column and the second row are
left as they are. In this step, k is the second vertex (i.e. vertex 2). The remaining steps are the
same as in step 2.

Calculate the distance from the source vertex to destination vertex through this vertex 2

4. Similarly, A3 and A4 is also created.

Calculate the distance from the source vertex to destination vertex through this vertex 3

Calculate the distance from the source vertex to destination vertex through this vertex 4.

